Modularity, Atomicity and States in Archimedean Lattice Effect Algebras
Vernadsky National Library of Ukraine
Переглянути архів Інформація| Поле | Співвідношення | |
| Title |
Modularity, Atomicity and States in Archimedean Lattice Effect Algebras
|
|
| Creator |
Paseka, J.
|
|
| Description |
Effect algebras are a generalization of many structures which arise in quantum physics and in mathematical economics. We show that, in every modular Archimedean atomic lattice effect algebra E that is not an orthomodular lattice there exists an (o)-continuous state ω on E, which is subadditive. Moreover, we show properties of finite and compact elements of such lattice effect algebras.
|
|
| Date |
2019-02-07T12:34:09Z
2019-02-07T12:34:09Z 2010 |
|
| Type |
Article
|
|
| Identifier |
Modularity, Atomicity and States in Archimedean Lattice Effect Algebras / J. Paseka // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 36 назв. — англ.
1815-0659 2010 Mathematics Subject Classification: 06C15; 03G12; 81P10 http://dspace.nbuv.gov.ua/handle/123456789/146093 |
|
| Language |
en
|
|
| Relation |
Symmetry, Integrability and Geometry: Methods and Applications
|
|
| Publisher |
Інститут математики НАН України
|
|