Weakly Nonlocal Hamiltonian Structures: Lie Derivative and Compatibility
Vernadsky National Library of Ukraine
Переглянути архів Інформація| Поле | Співвідношення | |
| Title |
Weakly Nonlocal Hamiltonian Structures: Lie Derivative and Compatibility
|
|
| Creator |
Sergyeyev, A.
|
|
| Description |
We show that under certain technical assumptions any weakly nonlocal Hamiltonian structure compatible with a given nondegenerate weakly nonlocal symplectic structure J can be written as the Lie derivative of J −1 along a suitably chosen nonlocal vector field. Moreover, we present a new description for local Hamiltonian structures of arbitrary order compatible with a given nondegenerate local Hamiltonian structure of zero or first order, including Hamiltonian operators of the Dubrovin-Novikov type.
|
|
| Date |
2019-02-14T14:43:38Z
2019-02-14T14:43:38Z 2007 |
|
| Type |
Article
|
|
| Identifier |
Weakly Nonlocal Hamiltonian Structures: Lie Derivative and Compatibility / A. Sergyeyev // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 32 назв. — англ.
1815-0659 2000 Mathematics Subject Classification: 37K10; 37K05 http://dspace.nbuv.gov.ua/handle/123456789/147362 |
|
| Language |
en
|
|
| Relation |
Symmetry, Integrability and Geometry: Methods and Applications
|
|
| Publisher |
Інститут математики НАН України
|
|