Quiver Varieties and Branching
Vernadsky National Library of Ukraine
Переглянути архів Інформація| Поле | Співвідношення | |
| Title |
Quiver Varieties and Branching
|
|
| Creator |
Nakajima, H.
|
|
| Description |
Braverman and Finkelberg recently proposed the geometric Satake correspondence for the affine Kac-Moody group Gaff [Braverman A., Finkelberg M., arXiv:0711.2083]. They conjecture that intersection cohomology sheaves on the Uhlenbeck compactification of the framed moduli space of Gcpt-instantons on R4/Zr correspond to weight spaces of representations of the Langlands dual group GaffÚ at level r. When G = SL(l), the Uhlenbeck compactification is the quiver variety of type sl(r)aff, and their conjecture follows from the author's earlier result and I. Frenkel's level-rank duality. They further introduce a convolution diagram which conjecturally gives the tensor product multiplicity [Braverman A., Finkelberg M., Private communication, 2008]. In this paper, we develop the theory for the branching in quiver varieties and check this conjecture for G = SL(l).
|
|
| Date |
2019-02-19T19:29:30Z
2019-02-19T19:29:30Z 2009 |
|
| Type |
Article
|
|
| Identifier |
Quiver Varieties and Branching / H. Nakajima // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 33 назв. — англ.
1815-0659 2000 Mathematics Subject Classification: 17B65; 14D21 http://dspace.nbuv.gov.ua/handle/123456789/149260 |
|
| Language |
en
|
|
| Relation |
Symmetry, Integrability and Geometry: Methods and Applications
|
|
| Publisher |
Інститут математики НАН України
|
|