Partner Symmetries, Group Foliation and ASD Ricci-Flat Metrics without Killing Vectors
Vernadsky National Library of Ukraine
Переглянути архів Інформація| Поле | Співвідношення | |
| Title |
Partner Symmetries, Group Foliation and ASD Ricci-Flat Metrics without Killing Vectors
|
|
| Creator |
Sheftel, M.B.
Malykh, A.A. |
|
| Description |
We demonstrate how a combination of our recently developed methods of partner symmetries, symmetry reduction in group parameters and a new version of the group foliation method can produce noninvariant solutions of complex Monge-Ampère equation (CMA) and provide a lift from invariant solutions of CMA satisfying Boyer-Finley equation to non-invariant ones. Applying these methods, we obtain a new noninvariant solution of CMA and the corresponding Ricci-flat anti-self-dual Einstein-Kähler metric with Euclidean signature without Killing vectors, together with Riemannian curvature two-forms. There are no singularities of the metric and curvature in a bounded domain if we avoid very special choices of arbitrary functions of a single variable in our solution. This metric does not describe gravitational instantons because the curvature is not concentrated in a bounded domain.
|
|
| Date |
2019-02-21T07:22:47Z
2019-02-21T07:22:47Z 2013 |
|
| Type |
Article
|
|
| Identifier |
Partner Symmetries, Group Foliation and ASD Ricci-Flat Metrics without Killing Vectors / M.B. Sheftel, A.A. Malykh // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 28 назв. — англ.
1815-0659 2010 Mathematics Subject Classification: 35Q75; 83C15 DOI: http://dx.doi.org/10.3842/SIGMA.2013.075 http://dspace.nbuv.gov.ua/handle/123456789/149367 |
|
| Language |
en
|
|
| Relation |
Symmetry, Integrability and Geometry: Methods and Applications
|
|
| Publisher |
Інститут математики НАН України
|
|